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1 INTRODUCTION 

The purpose of image data compression is to represent data efficiently without loss 

of information. This involves identification and removal of unnecessary information. 

U ncompressed image data is typically represented in such a way so that it is highly 

redundant. Need for data reduction arises due to limitation on storage space or trans­

mission time. Although the storage capacities of magnetic media increases, the demand 

for data compression has been growing steadily. The Nuclear Regulatory Commission 

requires that the radiographs be stored for 100 years. The film radiograph degrades 

due to aging. To avoid this generally the radiograph is digitized between 35 and 100 

micron spatial resolution and 12 bits. For a 11x14 inch radiograph this requires on the 

order of 30 Mbytes for storage. Data compression is necessary to increase the number 

of images that can be stored. Various factors used in the evaluation of compression are 

the amount of compression provided, speed of compression and decompression, memory 

requirements and the mean square error (MSE). Since the radiographs are viewed by 

the human eye, it is very important that the compression does not introduce any arti­

facts that are visible. It is necessary to evaluate the visual impact of the error due to 

compression. In this thesis, a method is presented which calculates the visual distortion 

of the com pressed image as com pared to the original image. This method is based on a 

model of the human eye. 

The compression techniques implemented in this thesis are lossy compression meth­

ods. Chapter 2 is concerned with the discussion of the various lossy compression algo­

rithms including vector quantization, fractal image compression and compression using 
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Discrete Cosine Transform (DCT). Chapter 3 discusses the idea of how the mathemat­

ical differences between the original and the compressed image are converted to visual 

differences and it gives a method of estimating the visible artifacts introduced by the 

compression method. Chapter 4 provides a description of the detectability measure used 

and how to calculate intensity of the pixel from the cathode ray tube characteristics. 

Chapter 5 summarizes the work done and possible directions for future work in the areas 

discussed in the previous chapters. 

In lossless compression there is no data loss and the reproduction of data is ex­

act. This is useful to compress computer programs and data which requires perfect 

reconstruction. Current lossless compression techniques offer only modest amount of 

compression (2 to 4). Since the image is viewed by the human eye, some degree of loss 

can be tolerated. The advantage of lossy representations is that they generally achieve 

compression ratios many times greater than lossless methods. 

Vector Quantization (VQ) is one of the lossy compression methods that is gaining 

widespread use. VQ offers high compression ratios (8 to 10) while still maintaining ac­

ceptable subjective image quality. One salient feature of VQ is that the decoder is very 

easy to implement, making it attractive for applications where the data is compressed 

once and decompressed many times, as in archiving. One of the disadvantages is the 

large amount of memory required for the codebook. VQ is not suitable for compress­

ing a few images and broadcasting the information since the codebook also has to be 

distributed. VQ provides the best possible performance of any block coding technique 

for a given block size (7]. VQ is often limited to small block sizes since the computa­

tional complexities are greater and artifacts are far more visible when larger blocks are 

employed. 

Arithmetic coding is used to further compress the indices of VQ and other files 

like mean and differential pulse code modulation ( dpcm) values in a lossless manner. 

Arithmetic coding removes redundancies caused by non-uniform distribution of message 
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symbols. The basic idea behind this lossless compression scheme is to assign a variable 

number of bits to symbols depending on their probability of occurrence. Symbols that 

occur frequently are assigned a fewer number of bits while symbols that are less probable 

are assigned more bits. This has the overall effect of reducing the average data rate. 

Arithmetic coding has several advantages over other lossless coding methods like 

Huffman coding, since it is capable of providing near optimal performance and does 

not require blocking of the data stream [7]. Huffman coding requires that each symbol 

be mapped to an integral number of bits. Arithmetic coding does not require the use 

of a blocking scheme and allows fractional bit allocations and consequently each bit in 

the arithmetic code is fully utilized. Huffman coding requires that a new set of codes 

be generated every time the symbol probabilities change. This must be done both at 

the encoder and the decoder and is time consuming. Arithmetic coding enables the 

separation of the process of coding and source modeling. Source modeling attempts to 

model data in a statistical sense, the way in which an information source produces data. 

The digitized images used in thesis are drawn from several sources: 

• Digitized film radiographs 

• Real time images obtained using phosphor screen and CCD camera 

• Images obtained using the simulation tool XRSIM 

XRSIM is a simulation package used to obtain a radiograph of a part whose computer 

aided design (CAD) model is input to the package. XRSIM has options for simulating 

different types of film. It is capable of calculating the optimum exposure times for a 

given set of generator voltage and current values. It also allows the introduction of noise. 

Various types of flaws like ellipse can be inserted into the CAD model and its effect on 

the radiograph can be observed. It should be noted that XRSIM can produce images 

that have more that 8 bits. Most of the images used in this thesis are 8-bit images. The 
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compression methods can also be extended to images using more gray scales through 

suitable modifications. Some of the images were digitized from radiographs using a 

digitizer. Other images were obtained using a real time x-ray imaging system. 

In image compression the location of the image error is as important as the magnitude 

of the error. Small errors around very bright regions are not visible. The mean square 

error measure does not provide a good measure of the visibility of the error. Subjective 

image quality as evaluated by human observers is used to classify the distortion in the 

compressed images as perceptible, imperceptible, annoying and very annoying. This 

method of comparing compression methods can be used for some classes of images but 

cannot be used for all cases, as these results are very subjective. Two compressed images 

might have the same mean square error but in one of the compressed images the error 

may be less annoying or visible when compared to the other. A new technique capable of 

quantifying the visual difference between two images from a mathematical perspective is 

the visual difference predictor (VDP) [13]. It can be used to test whether the flaw or any 

artifact is visible when compared to a reference image. This is important because most 

of the radiographs are viewed by human eyes. The predicted visible difference image can 

be used to optimize parameters such as viewing distance and background illumination 

so that the regions of interest can be seen by the human eye. The VD P can be used to 

see how the compressed image differs from the original image and it can be used to select 

the compression routines that minimize the visible difference between the compressed 

and original images. 
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2 IMAGE COMPRESSION METHODS 

2.1 Introduction 

This chapter discusses the various image compression methods that were used to 

compress digitized radiographic images. The techniques explored in this chapter are 

Vector Quantization, Fractal Image Compression and JPEG which is a Discrete Cosine 

Transform (DCT) based method. Fractal image compression is a new concept which has 

been explored widely in the past four years. JPEG is a standard compression method 

which is widely used to compare the performance of other image compression routines. 

The following sections provide an in depth description of each of the above methods 

together with the results of their application to radiographic images. 

2.2 Vector quantization 

Vector Quantization (VQ) methods represent a generalization of scalar schemes to 

the quantization of an ordered set of real numbers (vector). Scalar quantization is used 

for analog to digital conversion. In contrast VQ is used when the input signal already 

has a digital representation. A vector can be used to describe any pattern, such as a 

segment of speech or a segment of an image. VQ can be viewed as a form of pattern 

recognition where an input pattern is approximated by one of a predetermined set of 

patterns. This involves matching the input pattern to a stored set of codewords [7]. 



www.manaraa.com

6 

2.2.1 Classified vector quantizer 

The vector quantization algorithm implemented in this thesis is described in the 

following sections. The mean is removed from the shade blocks since this yields a sub­

stantial reduction in computation and storage by separately coding the vector mean and 

its mean removed residual vector. Let Nm and Nr be the size of the mean codebook 

and residual codebook, there are NrNm possible reproduction vectors. Since the mean 

and residual codebooks are searched individually, the computational complexity is re­

duced. Computation of the mean is simple (scalar computation) when compared to the 

residual comparisons. For the edge blocks differential pulse code modulation (DPCM) 

is used where the current pixel is estimated from the previous neighboring pixels. The 

prediction error is quantized. 

The classified vector quantizer (CVQ) classifies blocks of images as either shade or 

edge blocks depending on the gradient and line thresholds. CVQ reduces the complexity 

of coding, allowing classes to be coded based on their perceptual significance. The 

classification of each block is based on a perceptual model of edges. It is assumed that 

edge perception of the eye is proportional to normalized gradient and not the actual 

gradient [12]. The gradient between two adjacent pixels is normalized by the average 

gray level of the two pixels. The normalized gradient between pixel x( i,j) and its 

neighbor x( i, j + I) is 
d _ 2[x(i,j)- x(i,j +I)] 

h - x(i,j) + x(i,j +I) 

Similarly the gradient between x(i,j) and x(i + I,j) is 

d _ 2[x(i,j)- x(i + I,j)] 
v- x(i,j) + x(i + I,j) 

(2.I) 

(2.2) 

These normalized gradients are compared to two thresholds, 1i and Te to determine if 

the pixel transition is a shade or edge. For 8 bit images the edge threshold Te and the 

line threshold 1i are parameters that can be varied. In this thesis the edge threshold is 
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set as follows: 

8.0 
if dav < 30 

dav 
43.0 

if dav > 215 

otherwise (2.3) 

where dav is the average intensity of the two pixels under consideration. Four counters 

are used to determine the number of edge transitions in the horizontal and vertical 

directions. The counters are: 

Hp= Positive horizontal gradient counter 

Hn= Negative horizontal gradient counter 

'Vp= Positive vertical gradient counter 

Vn= Negative vertical gradient counter 

At each pixel, if dh exceeds Te then Hp is incremented. If dh is less than -Te then Hn is 

incremented. If for a block, any one of the gradient counters exceeds or equals the line 

threshold Ti then that block is classified as an edge block otherwise it is a shade block. 

Further details regarding CVQ can be found in (12]. 

2.2.2 Coding of shade blocks 

The mean of the shade blocks is predicted from the pixels along the left edge and 

top edge of the adjacent blocks as shown in Table 2.1. The prediction error of the mean 

is uniformly quantized into 64 levels. The predicted mean is just the average of the 

pixels along the left and top edges. By predicting the mean and storing the error in 

the mean, the storage requirements for the mean decreases from 8 bits to 6 bits for a 

quantizer of size 64. The actual mean is removed from the shade blocks and the mean 

removed shade block is coded using the codebook. The codebook is designed using the 

Linde-Buzo-Gray (LBG) algorithm. 
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Table 2.1 Predicted mean 

ml m2 m3 m4 m5 
m6 
m7 
m8 
m9 

Since the image is scanned from top to bottom and from left to right, the predicted 

mean considers the pixels along the left and top sides of the 4 x 4 block. The predicted 

mean is given by: 
1 9 

m =-Emi 
9 i=l 

where mi is the coded vertical and horizontal pixels bordering the current block. 

2.2.3 Design of codebook 

(2.4) 

The design of the code book is an important part of vector quantization scheme. The 

purpose is to find an optimal codebook which minimizes the average distortion. The 

conditions for optimality are: 

1) The quantizer employs a nearest neighbor selection rule. Let X be a vector to be 

quantized, into one of the m cells ( Si, 1 :5 i :5 m). Then 

Q(X) = Yi i.e (X fSi) if and only if d(X, Yi) :5 d(X, Yj) Vi# j, 1 :5 j :5 m (2.5) 

where Q(X) denotes the closest neighbor in the codebook, Yi are the individual vectors 

in the code book and d is the distance between the vector X and the codevalue Yi. 

2) Each output vector Yi is chosen to minimize the average distortion Di in cell Si. 

(2.6) 

Ni 

Di = 1/Ni E d(Xk, Yi) (2.7) 
k=l 
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where Ni is the number of vectors that belong to cell Si. The average distortion of all 

the codevectors is given by 

m 

D=lfNLLIIX-Yill2 (2.8) 
i=l XfYi 

The two optimization processes lead to the well known LBG algorithm, which is outlined 

in the following steps. 

• Step 1: Randomly choose an initial codebook C1 

• Step 2: Given a codebook Cm = Yi, partition the training set into clusters using 

the Nearest Neighbor (NN) rule: 

Si = X€T: d(X, Yi):::; d(X, }j), Vj # i 

• Step 3: Compute the centroids of the clusters Cm+l = centroid(Si) 

Yi = 1/Ni LX!Si X 

• Step 4: Compute the average distortion Dm+l for Cm+l· If the average distortion 

has no significant change, (Dm- Dm+df Dm) < € then stop, otherwise go back to 

step 2. 

2.2.4 Coding of edge blocks 

The pixels of the edge block are predicted using the formula shown below. The pre-

dieted error is quantized using a non-uniform quantizer of size 32. The predicted value 

est, at position (i + l,j + 1) is given by 

est= x(i + l,j) + x(i,j + 1)- x(i,j) (2.9) 

where x( i, j) is the gray scale value at pixel location (ij). The prediction error is given 

by 

err = x ( i + 1, j + 1) - est (2.10) 
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The original image is of size 256x160 as shown in Figure 2.1. Ti = 1 was chosen so 

that even the occurrence of one line classifies it as an edge block, since edges are very 

important in X-ray images. The parameters used are for coding are: 

Edge threshold Te =0.1 

Line threshold Tr = 1 

Block size =4 

The indices of the vector quantization, the mean and the dpcm values are further com­

pressed using lossless compression routines. The compressed image is shown in Fig­

ure 2.2. The statistics for the image are shown below: 

Total no of blocks=2560 

No of shade blocks=497 

No of edge blocks=2063 

Compression ratio=3.508. 

The compressed image shown is Figure 2.3 has the following parameters 

Edge threshold Te=0.15 

Line threshold Ti=0.1 

Block size=4 

The statistics for the image are shown below: 

Total no of blocks=2560 

No of shade blocks=937 

No of edge blocks= 1623 

Compression ration=3.996 

By comparing Figure 2.2 with Figure 2.3 it is evident that as the edge threshold is 

increased the number of shade blocks increases and hence the compression ratio increases. 

Similarly by keeping Te constant and increasing Ti will have the same effect on the 

compression ratio. 
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Figure 2.1 Original image 

Figure 2.2 Vector quantized image with Te = 0. 1 and Tt = 1 

Figure 2.3 Vector quantized image with Te = 0.15 and Tt = 1 
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2.3 Fractal image compression 

2.3.1 Introduction 

Arnaud E. Jacquin proposed a novel approach to image coding based on fractal 

theory of iterated transformations [9). We assume that the image redundancy can be 

exploited by modeling it as fractal objects. The technique is based on iterated contractive 

transforms in metric spaces. The salient features of this coding method are 

• Image redundancy can be exploited through self-transformability 

• The original image is approximated by a fractal image 

A metric space (X,d) is a space X together with a real-valued function d:XxX~R, 

which measures the distance d between pairs of points x and y in X. The function d 

should satisfy the following axioms: 

d(x, y) = d(y, x) Vx, y€X 

0 < d(x,y) < oo Vx,y€X,x -:f. y 

d(x, x) = 0 Vx€X 

d(x, y) ~ d(x, z) + d(z, y) Vx, y, z€X (triangle inequality) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Fractal objects have high visual complexity and low information content. They are 

made of transformed copies of either themselves or part of themselves [2]. Images can 

be coded by using the fractal concept by considering blocks in the images. This section 

covers the partitioning of the image, distortion measure and contractive transformations 

used. 
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2.3.2 Iterated transform theory 

Let (M, d) denote a metric space of digital images. Let J.lorig be the image we want to 

compress or encode. The inverse problem is to construct a contractive image transfor-

mation T for which J.lorig is an approximate fixed point. The requirements for the code 

Tare: 

3s < 1 such that VJ.l,V E M,d(r(J.l),r(v)) ~ sd(J.t,v) (contractivity) (2.15) 

d(J.lorig, r(J.lorig)) is as small as possible ( approximatefixedpoint) (2.16) 

where J.l, v are images and s is called the contractivity of T. If T has lower memory 

requirements for storage, then r is a lossy code for J.lorig. For any image J.lo and any 

positive integer n: 

(2.17) 

Equation 2.17 gives the error bounds for image compression as a function of the contrac-

tivity s. The forward iterates of r is given by r 2(J.l) = r( r(J.l)) where r 2(J.l) is the second 

iteration of the transformation. J.l is a fixed point of a transformation if r(J.l) = J.l· 

2.3.3 Construction of the fractal code 

An original image J.l is partitioned into non-overlapping blocks called range cells. 

Fractal compression tries to utilize the self-similarity that is found in certain regions of 

the image. The image will be formed of copies of properly transformed parts of itself. 

Each transformation selects a portions of the original image, which we denoted by Di 

and copies that part with a brightness ( o) and contrast ( s) transformation to a part 

of the produced copy which is denoted by~. We call Di domains and ~ranges. We 

denoted the transformations by Ti. For example let us consider a 128x128 image with 256 

gray levels. Let Rt, R2, ... , R256 be the 4x4 non-overlapping sub-squares of the image and 
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let D be the collection of all 8x8 (overlapping) sub-squares of the image. The collection 

D contains 121xl21=14641 squares. For each Ri search through all of D to find Di E D 

which minimizes equation 2.23; that is find the part of the image that most looks like the 

image above ~. This domain is said to cover the range. There are 8 ways to map one 

square to another (massic transformations Hi), this means comparing 8x14641=117128 

squares with each of the 1024 ranges. 

A square in D has 4 times as many pixels as in~' so we must sub-sample Di and 

this is done by the geometric transformation Gi. A choice of Di, along with Si and Oi 

determine a map Ti· This is the basic fractal compression algorithm. Different variations 

of this algorithm can be used. The different variations of the algorithm help to reduce 

the domain space D and also the number of computations. 

The image transformations are defined blockwise. They are of the form 

(2.18) 

where ~' 0:::; i < N denotes a nonoverlapping partition of the image into N range 

cells. J..L I ~ denotes the restriction of the image J..L to the cell ~. Ti is the composition of 

two transformations Gi and Hi. Ti =Hi o Gi, where Gi is the geometric transformation 

and Hi is the massic transformation of Ti. The fractal block coding of the J..Lorig amounts 

to finding for every ~ a transformation from the domain Di such that the transformed 

domain block r(J..Lorig I Di) is close to the original range block in the image(J..Lorig I Ri)· 

The main issues are: 

• Image dependent partitioning of the image 

• Specification of a class of discrete contractive transformations 

• Quantization of the parameters of the transform 
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2.3.4 Image partition 

The original image J.lorig is partitioned into nonoverlapping square range cells. Using 

a quadtree partitioning scheme, a square image is repeatedly partitioned into 4 equally 

sized sub-squares, until the subsquare covers the domain of interest fully. This process 

can be repeated until the squares are covered within a specified error limit. For a 

128x128 image the square of size 128x128 is level 0 of the partition and square of size 

64x64 is level of the partition. As the level of the partition increases the range block 

size decreases. We can also specify a minimum and maximum levels of the quadtree 

partition. Depending on the image statistics and block similarity, the size of the blocks 

that can be coded vary. Small squares can be covered better than larger ones. This 

partitioning allows the coder 

• to use large blocks in smoothly varying areas 

• to use small blocks in complex areas (edges and textures) 

2.3.5 Discrete image transformations 

We describe contractive transformations that operate on blocks. 

1) Geometric Part Gi: 

The transformation Gi maps image blocks from a domain cell Di = S(id,Jd, D) to a 

range cell Ri = S(ir,Jr, B), where S(ir,Jr, B) is a image block of size BxB starting at 

pixel location ( ir, Jr). In our case we use D=2B. The domain considered is twice the size 

of the range. To get the transformed domain of the same size as the range we decimate 

the domain. The pixels values of the contracted image on the range block S(ir,Jr, B) 

are the average of the four pixels in the domain block: 

( GiP, )ir+i,jr+i = (p, /(i),J(j) + J.li(i)+l,J(j) + J.li(i),J(j)+l + J.l /(i)+l,J(j)+t) /4, 

V i,j E 0, 1, ... , B -1 

(2.19) 
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(2.20) 

2) Massie Part Hi: 

Massie transformations process image blocks supported on a range cell~. These trans­

formations affect the gray scale values of the pixels of the transformed domain block 

whose size is the same as that of the range block. The general massic transformation is 

as shown below 

(2.21) 

where sis the scale factor and o is the offset. Given two squares containing n pixel gray 

values at, a2 , ••• ,an (from the domain) and bt, b2 , •• , bn from the range we can seek the 

scale factor s and offset o to minimize 

n 

R = I:.) s.ai + o - bi)2 (2.22) 
i=l 

This gives sand o which minimize the rms error between the range and the transformed 

domain. The minimum occurs when the partial derivates with respect to s and o are 

zero, which occurs when [9] 

s -

0 = 

[n2 (2:f=1 aibi) - (Ef=t ai)(Ei=t bi)] 
[n 2 Ef=t ai2 

- (Ef=I ai)2
] 

[Ei=I bi - s Ei=t ai] 
n2 

(2.23) 

(2.24) 

The parameters s and o are quantized uniformly to reduce storage, depending on the 

number of bit allocated to store the scaling and offset values. 

We also use some isometries to simply shufHe pixels within a range block. A list of 

eight canonical isometries follows: 

1) Identity: 

(2.25) 

2) Orthogonal reflection about mid-vertical axis: 

(2.26) 
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3) Orthogonal reflection about mid-horizontal axis: 

( f2J.L )i,j = J.LB-1-i,j (2.27) 

4) Orthogonal reflection about first diagonal(i-j): 

(£311.) .. = //_ .. r t,J rJ,t (2.28) 

5) Orthogonal reflection about second diagonal (i+j=B-1): 

( f4J.L )i,j = J.LB-1-j,B-1-i (2.29) 

6) Rotation through 90°: 

( lsJ.L )i,j = J.li,B-1-i (2.30) 

7) Rotation through 180°: 

( f6J.L )i,j = J.LB-1-i,B-1-j (2.31) 

8) Rotation through -90°: 

(2.32) 

Massie transforms generate a family of blocks which can be used for coding. 

2.3.6 Image reconstruction from a fractal code 

The natural decoding scheme simply consists of iterating a code T on any initial 

image J.Lo, until convergence to a stable decoded image is obtained. The sequence of 

images J.Ln = rn(J.Lo) is called the reconstruction sequence for the code T. For each cell 

index i, the transformation Ti is applied to the current image block over the domain cell 

Di, and mapped onto the range cell R;. 

The transformation in T is affine and has the form 

r(J.L) = L(J.L) + vo (2.33) 
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where Lis a contractive linear image transformation, and v0 is an image which is uniform 

in the block sense. The Nth iteration in the reconstruction process is given by (9] 

i=N-1 
J.lN = L Li(vo) + LN (J.lo) (2.34) 

i=O 

The term Li(v0 ) is the ith order term of the expansion. The finite sum 

i=N-1 
L Li(vo) (2.35) 
i=O 

is the partial sum of order N-1, and the residual term LN (po) represents the remainder 

of the expansion. From Banach theory, we can show that 

(2.36) 

which, since s < 1, is small for large N. The original image is shown in Figure 2.4. The 

absolute values of the expansion terms L(p0 ) and L2 (J.lo) are shown in Figure 2.5 and 

Figure 2.6 respectively. 

2.3.7 Suggested improvements 

A weakness of the quadtree partitioning is that it does not select the domain D 

based on its content. A way to remedy this, while increasing range partition is to 

use a Horizontal Vertical (HV) partition. In HV partitioning, a rectangular image is 

recursively is partitioned either horizontally or vertically to form two new rectangles 

instead of four in the quad tree partitioning scheme. The process repeats until the desired 

tolerance level is achieved. 

Another way to partition an image is based on triangulation. In triangular partition­

ing, a rectangle is divided into two triangles. Each of these triangles is subdivided into 4 

triangles by segmenting the triangle along lines that join three partitioning points along 

the sides of the triangles. The artifacts arising from the process do not run horizontally 

or vertically, which is therefore less distracting. 
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F igure 2.4 Original image of composite 'post12' 

2.3.8 Comparison of fractal block coding and vector quant ization 

T he bi t rates that can be obtained using fractal block coding schemes depend both 

on the system paramete rs and also on t he complexity of t he image to be encoded. 

The similari t ies between fractal coding and VQ is given in Table 2.2. Fractal coding 

is a vari able rate coder. Fractal coding is t ime consuming when compared to Vector 

Quantization (VQ). T he salient features of the fractal coder are: 

• Domain blocks are not needed at t he decoder and hence it is called a "virt ual 

codebook" scheme 

• The encoding does not use a codebook but exploits the redundancy present in the 

1mage 
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Figure 2.5 Absolute value of the first term of t he expansion for ' post12 ' 

2.4 DCT based coding 

T he JPEG (Joint Photographic Experts Group) compression method computes the 

Discrete Cosine Transform (DCT) of the image blocks. The DCT coefficients are then 

quantized depending on the quaLity factor and the statistics of the coefficients from 

t he different blocks. JP EG is a t rans form domain based compression method. The 

advantage of transform compression methods is that the t ransformed coeffi cients are 

.better correlated and hence better suited for compression when compared to the original 

image. One of the features of the JPEG coding method is t hat it is an asymmetrical 

coding method. The t ime for compressing and t he decompressing an image are equal. 
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Figure 2.6 Absolute value of the second term of the expansion for 'post12' 

2.5 Results 

In vector quantization Te = 0.1 was chosen, since at this value the compression did 

not introduces visible a rtifacts for the classes of images considered. It is observed that 

it takes at least eight iterations before the decompressed image stabilizes. Figures 5.5 

through 5.8 are decompressed images for 'postl2' for one, two, four and eight iterations 

where the initial image was 'post9'. It can be inferred from Figure 5.1 and Figure 5.8 

that after eight iterations the decompressed images do not differ much, even though 

the starting images are different. All the images compressed using fractal technique 

used minimum quadtree level=3, maximum quad tree level=5 and tolerance 1 except for 

the coding in Table 5.1 where tolerance=0.2, minimum quadtree level=4 and maximum 

quadtree level=6 for images ' post9' and 'postl2' . For 'flat5mil' minimum quadtree 

level= 3, maximum quadtree level=5 and tolerance=0.2. The image 'flat5mil' is the 
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Table 2.2 Features common to VQ and fractal coding 

VQ Fractal Coding 
Partition Partition 

Partitioning of image into square blocks Partitioning of image into range blocks 
Different block sizes possible Different block sizes possible 

Codebook Virtual Codebook 
Training images needed 

Codebook design using LBG 

Off-line transmission of codebook 
Block Matching 

Selection of a block distortion 
measure 

Block classification to retain 
the geometric nature of a block 

Decoding 
Image is represented by the 

list of addresses of 
blocks in the codebook 

Reconstruction by lookup table 
Execution Time 

Equal coding and decoding time 

Decimated and processed domain blocks 
extracted from the original image 

Reducing the search space of the domain 
pool is feasible 

No code book needed at decoder 
Encoding of range blocks 

Same type of blocks are used for coding 

Decoding 
Fractal code consists of block 

transformations on an image partition 

Iterative reconstruction 
Execution Time 

Slow encoding time and fast decoding 

image of flat plate of thickness 1 inch and the flaw is 5 mil thick. The Figure 2.15 shows 

the post12 image compressed using JPEG with the quality factor Q=0.7. 

From the Table 5.1 it can been inferred that the compression ratio achieved by VQ 

is close to that of JPEG. The lossless compression ratio is the theoretical maximum 

amount of compression possible based on the entropy of the image. Fractal coding does 

better than VQ and JPEG for image like postl2 where there is much self similarity 

among the blocks. Fractal coding achieves good coding of the flat5mil whereas other 

methods have poor compression ratios. The number of scaling and offset bits used in 

fractal coding are 5 and 7 respectively. 

Let ai be the gray scale values of the original image and bi be the gray scale values 
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Figure 2.7 Decompressed image for 'postl2' after one iteration of t he code 
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Figure 2.8 Decompressed image for 'post12' after two iterations of the code 
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Figure 2.9 Decompressed image for ' post l2' after four iterat ions of the code 
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Figure 2.10 Decompressed image for ' post12' after eight iterations of the 
code 
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F igure 2.11 Decompressed image for 'postl2' after one iteration with 'post9 ' 
as the initial image 
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Figure 2.12 Decompressed image for 'post12' after two iterations with 
'post9' as the initial image 
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F igure 2.13 Decompressed image for 'postl2' after four iterations with 
'post9 ' as the ini t ial image 



www.manaraa.com

30 

Figure 2.14 Decompressed image for 'post12 ' after eight iterations with 
'post9' as the initial image 
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Figure 2.15 Decompressed image for 'post12' using JPEG 

of the decompressed image. The signal to noise ratio (SNR) is defined as: 

(2.37) 

The SNR values for different values of the number of sbits (scale factor) and number 

of obi ts (offset) are shown in Table 2.4. All the images were compressed using a quad tree 

scheme with minimum depth 3 and maximum depth 5 and tolerance 1. From Table 2.4 

it can be concluded that we need at least 5 scaling bits and 5 offset bi ts to represent 

Table 2.3 Compression ratio for various compression methods 

Image Lossless VQ THL=1 VQ THL=2 JPEG Fractal 
THS=0.1 THS=0.15 Q=0.70 

autof 1.654 8.100 11.520 11 .060 5.281 
post9 1.410 7.465 7.717 10.450 4.520 

post12 1.015 1.927 1.926 4.067 4.596 
flat5mil 1.110 1.613 1.607 2.530 5.258 
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the image better using the SNR criterion. The parameter sbits and obits refer to the 

number of bits used to represent the contractivity (scale) factor and the offset o. From 

Table 2.5 it is evident that as the number of minimum levels in the quadtree partition 

increases the compression ratio decreases as the size of the range blocks get smaller and 

the number of transformations used to represent the image increases. Similarly for a 

fixed minimum level in the quadtree partition as the number of the maximum level in 

the quadtree partition increases the compression ratio decreases. 

Table 2.4 Values of SNR between the original 'post12' image and successive 
terms of the reconstruction sequence with initial black image 

lteratioQ sbits=5 sbits=5 sbits=5 sbits=4 sbits=6 
Number obits=.5 obits=6 obits=7 obits=6 obits=6 

1 6.2540 6.0533 6.0529 6.1081 6.0438 
2 10.9536 10.7844 10.7723 10.837 10.7372 
3 13.2665 13.2319 13.2239 13.2503 13.1956 
4 14.0842 14.1221 14.1351 14.1107 14.1064 
5 14.2985 14.3699 14.3951 14.3500 14.3673 
6 14.3395 14.4185 14.4478 14.3965 14.4200 
7 14.3475 14.4279 14.4580 14.4063 14.4309 
8 14.3488 14.4297 14.4601 14.4085 14.4329 

Table 2.5 Compression ratio for 'post12' 

Compression Tolerance Minimum Maximum sbits obits 
Ratio level level 

21.6032 1 3 5 5 6 
21.5968 1 3 5 5 5 
21.4926 1 3 5 4 6 
19.8012 1 3 5 6 6 
19.7859 1 3 5 5 7 
4.5973 1 4 6 5 7 
19.8334 1 4 5 5 7 
19.7849 0.2 3 5 5 7 
19.7849 0.01 3 5 5 7 
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3 VISUAL DIFFERENCE PREDICTION 

3.1 Introduction 

The term image fidelity is related to the visual equivalence of two images. Subjective 

rating scales do not provide an accurate or repeatable measure to measure image fidelity. 

We need an objective measure which measures the fidelity of images. A visual model is 

used to predict the visual differences between the compressed and the original images. 

There are many possible models yielding different estimates of image fidelity. The visual 

difference predictor (VD P) is used to calculate how the mathematical differences in 

gray scales between images translate into visual differences [13]. The commonly used 

methods like MTF and noise power spectra calculate a single number for describing 

image quality. The VDP addresses the visibility of differences between two images 

rather than the visibility of a single image. The input to the algorithm includes two 

images and parameters for viewing conditions and calibration. The output is an image 

representing the visible differences between the two images. 

The response of the eye is nonlinear with respect to luminance and this is modeled 

by the amplitude nonlinearity. A image once captured by the receptors in the eye, pass 

through numerous layers of cells, each of which, by means of its input/output relation, 

imposes some transformation of the data. Each neuron in the eye has a receptive field 

(the region of the retina within which light will cause some change in response of the 

cell). The visual cortex receives all of the cortex projection from the retina via lateral 

geniculate nucleus (LGN). A portion of the visual cortex called Vl has a type of cell called 
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simple cells. The simple cells will respond to a range of frequencies and orientation about 

its center values, and this range is characterized by spatial frequency and orientation 

bandwidths of the cortex. The receptive field (RF) of each cell occupies only a portion 

of the total frequency region to which the collection of cells is sensitive. The ideal RF 

is a 2D Gabor function {the product of 2D sinusoid and 2D Gaussian). 

To predict the differences between two images the initial step is to transform the 

image into a representation as seen by the eye. The cortex filter described in the following 

section is a digital approximation of the ideal RF. 

The VDP consists of the following components 

• Calibration for input images 

• A Human Visual System (HVS) Model 

• Method for displaying the HVS predictions of visible differences 

3.2 HVS model 

The HVS model attempts to capture the lower order processing of the visual systems, 

such as the optics, retina, lateral semiculate nucleus and striate cortex. The approach 

is to model the visual system as a number of processes that limit the sensitivity of the 

eye. Two images having the same Mean Square Error (MSE) may differ in the degree 

of visibility of the error. This fact necessitates the use of the HVS model rather than 

a physical model of the displayed image. Physical models using parameters like mean 

squared error often fail to determine the visibility of the error. The HVS model address 

sensitivity variations with respect to the following issues 

• Light intensity 

• Spatial Frequency 
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2DCSF De~eetion Mechanisms 
Amplitude Nonlinearity 

~ ~ abc_ v ____,. 
SF 
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L 
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Figure 3.1 HVS model 

• Signal Content 

Sensitivity is defined as the inverse of the contrast required to produce a threshold 

response, 

where CT is referred to as the threshold. The Michelson definition of contrast, 

C = Lmax - Lmean 

Lmean 

(3.1) 

(3.2) 

where Lmax and Lmean are the maximum and mean luminance of the waveform. The 

variation in sensitivity as a function of the light intensity is due to the nonlinear response 

of the eye and is called the amplitude nonlinearity of the HVS and is implemented as a 

point process; variation in sensitivity as a function of spatial frequency are due to the 

neural response of the eyes and optics and is referred to as the contrast sensitivity func­

tion (CSF), implemented as a filtering process; variations in sensitivity as a function of 

signal content are due to the postreceptoral neural circuits and these effects are known 

as masking. Masking is implemented as a combination of filters and nonlinearities (de­

tection mechanisms). These three components are modeled separately and are cascaded 

as shown in Figure 3 .1. 
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3.2.1 Amplitude nonlinearity 

Visual sensitivity is a nonlinear function of luminance. The amplitude nonlinearity 

describes variations in sensitivity as function of gray scale and background illumination. 

It is assumed that the observer is able to focus on a small image area. The amplitude 

nonlinearity as a function of pixel luminance is given by [15] 

(3.3) 

where, R/ Rma:c is the normalized response. L is the luminance in cd/m2 , band c1 are 

constants equal to 0.63 and 12.6 respectively. The sensitivity of each pixel is determined 

from that pixel only. Although the visual system cannot adapt to very small areas of 

an image, we assume that the observer may view the image at any close distance. This 

removes any frequency attributes from the amplitude nonlinearity component and facil­

itates modeling the CSF as a separate block. A logarithmic response for the amplitude 

nonlinearity overestimates the detectability of differences in the low gray scale range. 

3.2.2 Contrast sensitivity function 

The CSF models the variation in sensitivity of the eye as a function of spatial fre­

quency. The variations are due to the sampling aperture of the cone photoreceptor, and 

both passive and active neural connections [17]. The CSF changes as a function of 

light adaptation, noise, color, accommodations, eccentricity and image size. Equation 

3.2 models the sensitivity S, as a function of radial frequency p in cy / deg, orientation 

(} in degrees, light adaptation level 1 in cd/m2, image size i 2 in visual degrees, lens 

accommodation due to distanced in meters, and eccentricity e in degrees, [13] 

(3.4) 

bwa = 0.856 tf1·14 where d is the distance in meters 

where e is the eccentricity in visual degrees, k=0.24 
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bwo = ((1- ob)/2) cos(48) + (1 + ob)/2 where ob=O. 7 

Pis the absolute peak sensitivity whose value is 250 [17]. The parameters bwa, bwe, bwo 

model the changes in bandwidth due to the accommodation level, eccentricity and ori­

entation. Eccentricity is the location in the visual field. The fovea, or center is at 0°. 

Orientation is the orientation of the spatial frequency modulation in the image. Vertical 

stripes are modulated horizontally and have 8 = 0. For each digital frequency (ij) the 

corresponding (p, B) is calculated using cartesian to polar conversion. The frequency p 

in cy / deg is calculated as follows 

p(cyfdeg) = 1r * d * (cy/mm)/180 

where, cy /mm is the physical spacing of the pixels in the displayed image. For a 256x256 

image and for a viewing distance of 91.2 em and a display resolution of 20 pixels/em the 

highest image frequency is 16 cycles/deg. The sensitivity as function of image size and 

light adaptation level is given by [13] 

S(p, l, i 2) = ( (3.23(p2i 2)-0•3 ) 5 + 1 )-k)A1fpe-(B,£p) {/1 + 0.06eB,fp (3.5) 

A, = 0.801(1 + 0.7 /l)-0
•
2 

B, = 0.3(1 + 100/1)0
'
15 

(3.6) 

(3.7) 

where f is a frequency scaling constant whose value is 0.9. Equation 3.3 models sensi­

tivity due to image size, the second part models sensitivity and bandwidth as a function 

of light level. The CSF is modeled in the units of cy / deg and then mapped to the dig­

ital frequency domain. The calibration parameters are viewing distance (d), horizontal 

and vertical pixel spacings, image size and light level (1). In models based on spatial 

frequency, the approach is to weight the sensitivities of the different channels to get an 

aim CSF. The problem with this technique is that it is difficult to include the adaptive 

behaviors of the CSF since it is not decoupled from the multiple channels. The VDP 

technique of preceding the cortex filter (Section 3.3) with the CSF causes a distortion 

in the shape of the frequency response from that of the cortex filters. 
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3.2.3 Detection mechanisms 

The final component of the HVS is comprised of multiple detection mechanisms. The 

components are 

• Spatial frequency hierarchy that models the frequency selectivity of the eye 

• Masking function that models the masking magnitude 

• Psychometric function that deals with the threshold levels of detection 

• Probability summation which combines the outputs of all detection mechanisms 

into a single response 

3.2.3.1 Spatial frequency hierarchy 

The spatial frequency selectivity of the visual system is characterized by a radial 

spatial frequency and orientation. The visual cells in the cortex of the eye respond to a 

range of frequencies and orientations about the center values, which can be characterized 

by frequency and orientation bandwidths. Studies based on psychovisual methods have 

found that the eye has a radial frequency selectivity that is symmetric on a log axis with 

bandwidths of one octave [6). Further, the orientation selectivity is symmetric about 

a center peak angle and bandwidths varying as a function of radial frequency from 30° 

for high frequencies to 60° for low frequencies [11]. These effects can be modeled using 

Gabor and Wavelet approaches [16). In this thesis the frequency sensitivity is modeled 

using a hierarchy of filters. The hierarchy of filters have properties of multiresolution 

decomposition with localization in frequency and space. The Cortex Transform [19) 

was selected to implement the frequency selectivity over Wavelet and Gabor transforms. 

The cortex transform introduced by Watson, is a non-orthogonal transform which is 

reversible. One of the disadvantages of the the cortex transform is high computational 

complexity. The radial frequency selectivity and the orientation selectivity are modeled 
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with separate classes of filters and are cascaded. The combined filter is referred to as the 

cortex filter. The implementation here is different from the original cortex transform in 

certain aspects, and they are 

• Filter transitions use Hanning function instead of a Gaussian distribution 

• Gaussian baseband characteristics to reduce ringing 

• All radial frequencies above 0.5 cy /pixel (high frequency residual) are discarded 

The radial frequency selectivity is represented by dom filters (difference of low-pass mesa 

filters). The mesa filters are characterized by a fiat passband, a transition region, and 

a flat stop-band region. The transition region is modeled with hanning window and the 

mesa filter is described by its half-amplitude frequency P! and transition width tw. The 
2 

mesa filter is described below [14] 

mesa(p) = 1.0 

1(1 (7r(p-pt+~))) - -
2 

+cos 
tw 

for 

- 0.0 

tw 
for p < Pt- 2 

tw/2 tw 
P!- --p < Pl +-

2 < 2 2 
tw 

for p < Pt + 2 (3.8) 

The dom filters shown in Figure 3.2 are formed as the difference of two mesa filters with 

different half amplitude frequencies. The kth dom filter is given by [14] 

domk(P) - mesa(p)lp
112

=2-<k-t) - mesa(p)IP
112

=2-k for k = 1, K- 2 

- mesa(p)lp
112

=2-<k-t) - base(p)h12 = 2-k fork= K- 1 (3.9) 

where the I symbol means the mesa filter is to be calculated with the indicated half­

amplitude frequency p112 • The lowest frequency filter is referred to as the baseband. A 

truncated Gaussian function is used to avoid ringing. The baseband function is given 

by 

base(p) 
L tw 

e-~ for p < Pl/2 + -
2 

tw 
- 0 for p ;::: Pl/2 + 2 (3.10) 
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where u = !(Pt/2 + t~); p112 = 2-K. K is the total number of radial filters. The 

frequency is expressed in cy /pixel. Higher values of k correspond to higher level of the 

hierarchical pyramid and lower frequency bands. The transition width of each filter is a 

function of its half-amplitude frequency 

0.9 

0.8 

0.7 

0.6 
~ 
c 
&,0.5 
Cl) 

e 
0.4 

0.3 

0.2 

0.1 

2 
tw = -pt 3 2 

(3.11) 
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Figure 3.2 Domain filters 

The orientation selectivity is modeled with fan filters as shown in Figure 3.3. An 

integer number of fan filters are used to approximate the nearly continuous orientation 

sensitivity of the visual system. Hanning window is used to model fan filters. The equa­

tion for fan, as a function of orientation is [14] 

f (8) _ !(1 (7rl8-8c(l)l)) 
an1 2 + cos 8tw for 18- 8c(l)l ~ 8tw 

- 0.0 for 18- 8c(l)l > 8tw (3.12) 
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Btw = Angular transition width 

Bc(l) = Peak of the fan filter 1 

(J - 180 tw-y 

Bc(l) = (l- 1)Btw- 90 

L= Total number of fan filters 
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In the current implementation K=6 and L=6 and the orientation bandwidth is 30 de-

grees. Since the orientation bandwidth is 40° we use L = 6. 
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Figure 3.3 Fan filters 

The cortex filters are formed as the product of dom and fan filters as, 

cortexk,l (p, 8) - domk(P) fan,( B) for k = 1, K- 1; l = 1, L 

base(p) for k = K (3.13) 
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where the indices k and I are for the dom and fan filters respectively. No orientation 

selectivity is necessary for the baseband. The total number of cortex filters is ((k -1) * 
L + 1), which is 31 for K=6 and L=6. Cortex filters are reversible as shown below 

L cortexk,l (p, 0) = 1 V p, (J (3.14) 
k=I,Kl=I,L 

3.2.3.2 Contrast units in the cortex filtered images 

The two images whose visual differences is to be estimated are filtered by the cortex 

filter after modification by the amplitude nonlinearity and CSF. The contrast in the 

cortex bands is given by 

(3.15) 

where Ck,l (i,j) is the contrast in band (k,l), Bk,z(i,j) is the filtered image and Bk,z(i,j) 

is the mean of band (k,l). All of the mean filtered images except the baseband mean 

Bk,r(i,j) is zero, making the above equation indeterminate. To overcome this we use 

we use the baseband mean B K as the denominator and leave numerator mean as zero, 

yielding, 

(3.16) 

3.2.3.3 Masking function 

Masking is the decrease in visibility due to the presence of a suprathreshold back­

ground. The masking function quantifies this as a function of background contrast. It 

is modeled using a threshold elevation image. Let us consider a image (the background) 

has a contrast of c; the other (the background plus the increment) has a contrast of 

c + ~ c. The increment~ cis varied to find the threshold at which c + ~ c can just 

be discriminated from c. When the background contrast is zero ( c = 0), the measured 

contrast-detection threshold is C. As the contrast of the background increases the thresh­

old increases and this is called the threshold elevation. The threshold elevation image 
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gives the threshold used in the psychometric function. The masking function describes 

the threshold of a test signal as a function of the contrast of the mask (background). 

It is plotted on a log-log scale, the horizontal axis is the contrast of the mask, and the 

vertical axis is the threshold of the signal in the presence of the mask. The plot shows 

two asymptotic regions, one whose slope is zero near low contrast and a positive slope 

which shows that threshold increases as the mask contrast increases. The zero slope 

occurs for masks of low contrast, indicating there is no masking effect, near the uniform 

field. This uniform field threshold is a function of frequency and is equal to the inverse 

of the CSF. The masking curve described in the Figure 3.4 occurs for all signal and mask 

frequency combinations, the location of the asymptotes depend on the frequencies of the 

test and mask signals. Both the CSF and the spatial frequency selectivity of the visual 

system play important part in the modeling of masking. 

1.8 

1.6 

1.4 

o~----~----~~--~----~----~----~----~--~ 
-2 -1.5 -1 -0.5 0 0.5 1.5 2 

log( mask contrast • csf) 

Figure 3.4 Masking function normalized by inverse of CSF on both axes 

Let us consider the simple case of where the test and the mask signal frequency is 
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the same. We normalize both the test threshold and mask contrast axes by the test 

frequency's threshold { c!J) , the curve in Figure 3.4 can describe all frequencies. This 

normalization removes the CSF, and the vertical axis is labeled threshold elevation Te, 

T(p,m) 
Te(p, m) = T(p, O) = T(p, m).csf(p) (3.17) 

which describes masking as a functions of frequency p and mask contrast m. If we change 

the horizontal axis by normalizing for the filter shape of the visual systems responsible 

for detecting the test frequency F, the curve in Figure 3.4 represents threshold elevation. 

The mask contrast axis now represents contrast as seen by the detecting mechanism. 

Since the cortex filter is used to model the detection mechanism's frequency response, 

the cortex filter normalizes all frequencies in the band to their effective contrast as seen 

by the detection mechanisms. After filtering the images into separate bands, we need 

not worry about individual frequencies in the band, because all frequencies in the band 

have been normalized by the CSF and cortex filter. So a single curve can be used to 

describe masking in the band. The normalized mask contrast term, 

(3.18) 

which describes the mask contrast at frequency (pn, Bm) seen by the mechanism that 

detects the test signal at frequency (pt, Bt)· The indices k, l on the cortex filter correspond 

to the cortex filter centered on the test signal frequency. 

In the following paragraphs the concept of phase coherent and phase-incoherent 

masking is discussed. In phase coherent masking sine waves were used for test and 

mask frequencies. The special case where the test and mask frequency is the same is 

known as contrast discrimination, because the detection task is simply to discriminate 

differences in contrast between the signal and the mask contrast. In this case the thresh­

old drops below the uniform field threshold near the intersection of the asymptotes and 

is known as the dipper effect. The phase coherent masking results in a high mask con-
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trast asymptote with a slope of 0. 7 ( s ). The masking function is modeled using power 

laws as a function of the normalized mask contrast mn, 

( ) T(mn) [ mn ]s ( ) 
Te mn = T(O) = T(O) for mn > T 0 (3.19) 

Te(O) = 1.0 for mn ::; T(O) (3.20) 

In these equations the frequency term is omitted because they are assumed to be equiv-

alent. 

For phase incoherent masking the high contrast asymptote has a slope of 1 indicating 

a Weber-law behaviour. The facilitation effect does not occur for noise masks. The 

results of the noise masks and test signals are fit with the following equation 

T = W.jn~ +m2 (3.21) 

where T is the threshold, m is the mask contrast, W is the detection signal-to-noise 

ratio and n~ is proportional to the internal noise of the visual mechanism responsible for 

detecting the signal. The parameters W and ni can be determined from the asymptotes 

of the experimental data as 

T(mn) ( ) W = when ni << mn high - contrast asymptote 
mn 

(3.22) 

n; = T~) when mn = 0 (zero- slopeasymptote) (3.23) 

We can rewrite equation 3.21 in terms of threshold elevation, 

(3.24) 

In the VDP application the image content is regarded as noise, whereas the distortion 

is regarded as the signal whose detectability we wish to predict. The difference in the 

high contrast asymptote slope between the phase coherent and phase incoherent case is 
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due to the uncertainty caused by the masking pattern. This uncertainty can be reduced 

by learning. Since the sine masking pattern is easy to learn as the eye just needs to 

look for differences in the expected appearance. The noise pattern is difficult to learn, 

which results in higher slope that is indicative of more masking. The masking function 

including the learning effect is given by, 

(3.25) 

where Te is the threshold elevation, and s is the slope of the high contrast asymptote, 

which ranges between 0.6 and 1.0. The parameters k1 and k2 determine the pivot of all 

the learning slopes. Parameter b determines how closely the curve follows the asymptote 

in the transition region and varies for the different bands. The parameters k1 , k2 are 

related to W by 

k1 - W(1/(1-Q)) 

k2 - w<1/(1-Q)) 

(3.26) 

(3.27) 

where Q is the slope of the high-contrast asymptote when the intersection of the two 

asymptotes is 1 on the normalized mask contrast axis. 

If the threshold and the mask contrast are normalized by the uniform field threshold 

( c:f), then a single curve describes the masking for all frequencies. The masking function 

described above is for the visual systems spatial frequency selectivity rather than for the 

discrete approximation of the cortex filter. There is not a detector centered at every 

frequency. In the cortex filter the test frequency includes all frequencies in that particular 

cortex band. We need to broaden test frequency to include all frequencies in the cortex 

band. Similarly the mask frequency consists of all frequencies in the cortex band. Many 

frequencies contribute to the normalized mask contrast mn within a particular band (k,l) 

as a function of pixel location (i,j). It is given by, 

m!'1(i,j) = F-1(R(u, v) · csf(u, v) · cortexk'1(u, v)) (3.28) 
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where R is the Fourier transform of the input image after modification by amplitude 

nonlinearity. Only the magnitude of contrast affects the masking function. The threshold 

elevation image Tek,l as a function of the pixel location is given by 

(3.29) 

The band-specific threshold elevation Tek'1(i,j) is referred to as the threshold elevation 

image. The masking image cannot be determined from the original image or the com­

pressed image alone. The solution is to form the masking image from both the original 

and the compressed images, using the minimum of the two threshold elevations. This 

technique is called mutual masking since this is the only masking that is common to 

both the images. The the masking threshold is given by 

T k '(. ') • [Tk '( · ') e~ Z,J = mzn ei Z,J (3.30) 

where the subscripts 1 and 2 refer to the two images input to the VDP. 

3.2.3.4 Psychometric function 

The Psychometric function describes the increase in the probability of detection as 

a function of the contrast. It is given by 

(3.31) 

where, P( c) is the probability of detection of a signal of contrast c, a is the threshold 

and f3 is the slope of the psychometric function. In the VDP algorithm the probability 

of detection for each of the cortex bands is given by 

(3.32) 

The contrast difference for band k, 1 as function of pixel location (i,j) is given by the 

following equation 

tl.C (i ') = Blk,1(i,j) _ B2k,l(i,j) 
k,l ' 1 BK BK (3.33) 
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where B1k,l and B2k,l are the two filtered images for band k, 1. 

3.2.3.5 Probability summation 

After the calculation of the individual probability images for the different cortex 

bands they need to be combined to obtain a single image. Probability summation is 

used, with the the equation given by the product series 

Pt(i,j) = 1- ll (1- Pk,l(i,j)) (3.34) 

where ll denotes the product and Pt is the total probability of detection resulting from 

all bands. The most common method used to combine the outputs of the different 

cortex bands is vector summation into a single number. This approach treats the whole 

image as a single signal and does not show which areas of the image are above and 

which parts are below the threshold. The method of probability summation given by 

the above equation is more appropriate for threshold predictions and hence relevant to 

image fidelity assessment. 

3.2.4 Display and interpretation of the visual difference image 

The output of the VDP is a probability image of detecting visible differences. The 

magnitude of the visible difference image ranges from 0 to 1. Considering the polarity 

of the differences, the probability map extends from -1 to 1. If in the compressed image 

the gray level is less than the original image and the error is visible then we have a 

probability of -1. The following methods are used for displaying the detection image 

• Free-Field difference map 

• In-context difference map 
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3.2.4.1 Free-field difference map 

The free-field difference map, displays the predictions on a uniform field of gray 

levels. This method uses a linear mapping of the probability values of the detection map 

given by 

FF( . ') _ S n (. ') (max- min) (max+ min) 
't, J - rt 't, J * 2 + 2 (3.35) 

where FF is the free-field difference prediction, SP is the signed probability of detection, 

max and min are the display device maximum and minimum values. The free-field 

difference map is a gray scale image. Pixels that are lighter than (max+min)/2 indicate 

where the distorted image is lighter than reference. Pixels that are full white or black are 

detected completely (the visual difference between two images at these pixels locations 

are visible to the eye). 

3.2.4.2 In-context difference map 

With the free-field difference map it is difficult to judge the relation between the 

predicted differences and the actually observed differences between the two input images. 

In-context difference map overcomes this problem by displaying the predicted differences 

in context of the reference image. The reference image is copied to the RGB planes, and 

the detection image is scaled and added to one of the color planes as given below 

Ic( . ') _ sn(· .)(max+ min) f(' ') z,J - rt z,J 
2 

+ re z,J (3.36) 

where ref is the reference image or in this case the uncompressed image. If the red layer 

is used then cyan indicates where the distorted image appears darker than the reference. 

3.2.4.3 Interpretation of maps 

The probability map indicates the magnitude and location of the predicted visual 

differences. The output detection maps can be used to see the nature of the distortion 
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introduced by the different compression methods. The shapes and locations of the 

predicted differences can be used to improve or choose the appropriate compression 

routines and parameters. The detection map can be reduced to a single number and 

used to determine if two images are visually identical. If the peak magnitude of the 

detection map is less than 0.5, the images are visually equivalent. To compare two 

different compression methods we perform the VDP for a number of viewing distances 

and determine the minimum distance where the two images are visually equivalent. This 

is referred to as the critical distance. The compression method with the lower critical 

distance is better for the image under consideration. 

3.3 Results 

The original image 'sub' is shown in Figure 3.5 and the compressed image using 

fractal compression is shown in Figure 3.6. The visual difference predicted image is 

shown in Figure 3.10 and it evident that the VDP image agrees well for high frequencies 

and is deficient at low frequencies as can be seen from the low gray scale values in the 

left portion of the image. Figure 3.9 shows the intensity values that are used for the gray 

levels when calculating the VDP image. The intensity of the gray levels was obtained 

by measuring the intensity of uniform gray level images using a exposure meter which 

calculates the luminous intensity. Figure 3.12 shows the visual difference predicted image 

for the JPEG image and it agrees well with the visual evaluation. The JPEG compression 

introduces the least amount of visual distortion. The VDP image has high detectability 

values for the flaw and this might be due to the approximate intensity values which 

have been used. From the figures presented it is seen that the VDP overestimates the 

predictability of difference at the low gray values. The parameters used to calculate the 

VDP are W=6, Q=0.7, s=0.7 and h=4. Figure 3.16 shows the VDP image for the upper 

right portion (128x128) of Figure 5.4 for the original image 'post12'. It is observed from 
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Figure 3.5 Original image 'sub' 

Figure 3.17 that the fractal image compression introduces artifacts along the part it ions 

which are more annoying due to t he discontinui ty across the partitions. Image smoothing 

might help reduce t he VDP values. The performance of fractal compression method 

is better relative to JPEG in terms of compression ra t io but JPEG introduces errors 

which are less visible when compared to fractal compressed images. Figure 3.8 shows 

the thresholded VDP im age for vector quantization and it predicts the error along the 

border on the flaw reasonably well but is deficient in the inner regions of the flaw. One 

of the areas which need to be further explored is how the values k1 , k2 and s change 

wi th the band values (k,l). In this thesis we have used constant values for all the bands. 

T he high frequency errors are well predicted by t he VDP. Consequently the performance 

in the lower frequency bands need to be investigated to estimate values of k1 , k2 and s 

that are required to obtain bet ter VDP values . 
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Figure 3.6 Compressed image using fractal compression 

Figure 3.7 Compressed image for 'sub' using JPEG with Q=0.7 

Figure 3.8 Compressed image using vector quantization 
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Figure 3.9 Relationship between gray scale and intensity 
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Figure 3.10 Visual difference predicted image for fractal compressed image 

Figure 3.11 Visual difference predicted image thresholded at 0.5 

Figure 3.12 Visual difFerence predicted image for JPEG image with Q= 0.7 
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Figure 3.13 Visual difference predicted image thresholded at 0.5 for JPEG 
with Q= 0.7 

Figure 3.14 Visual difference predicted image for vector quantized image 
with Te = 0.15 and Tt = 2 
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F igure 3.15 Visual difference predicted image thresholded at 0.5 for vector 
quantization 

Figure 3.16 Visual difference predicted image for fractal compressed image 
of 'post12' 

Figure 3.17 Visual difference predicted image t hresholded at 0.5 for 'post12' 
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4 APPLICATION OF DETECTABILITY MODEL TO 

IMAGES 

4.1 Detectability nneasures 

The VDP measure presented in the previous chapter predicts the visual difference 

between two images at every pixel. The probability of detection (pod) presented in this 

chapter deals with the detection of a signal in the presence of noise. The method which 

produces the radiograph also introduces noise and this method determines whether in a 

small portion of the image a signal is present. Once the radiograph has been digitized, 

we can apply statistical techniques based on the known noise characteristics of the 

measurement process to determine the statistical significance of the flaw. The procedure 

optimally thresholds a digitized radiograph within regions of stationary data. The image 

data within a stationary region is assumed to be a mathematical combination of the flaw 

signal and noise. The threshold is selected based on a comparison of the statistics of the 

candidate region with a region whose statistics are known to be caused by noise alone. 

Consider a region within the image having the same average background but does not 

include a flaw signal. We estimate the probability density functions of the candidate 

region and flaw-free region, Pn+s and Pn by their normalized histograms. The optimal 

threshold is selected by maximizing (18] 

M M 

Q = LPs+n(9)- LPn(g) (4.1) 
g=t g=t 

over all gray levels g, where M is the maximum gray scale value and t is the threshold. 
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The distribution of thresholded pixels within the image window is dictated by the 

noise distribution Pn(g). If we accept the hypothesis, we assume no flaw is present, if we 

reject it, we assume a flaw is present. Under the assumption of the above hypothesis, 

each thresholding operation is a Bernoulli trial with a probability of success defined by 

M 

Pw = LPn(9) (4.2) 
g=t 

The resulting number of pixels within the window follows a binomial distribution and is 

represented as: 

where, nw is the number of thresholded pixels and A is the total number of pixels. The 

hypothesis can be tested as 

(4.3) 

For a large sample, the binomial distribution can be approximated by a normal dis­

tribution having mean Pw and variance Pw(l - Pw)/A, which yields the following test 

statistic. 

!bu.. - P. 
ZT = A w 

{cPw(l- Pw)/A) 

The computed value of ZT is compared against Za and the decision rule is: 

Accept Ho if ZT:::; Za (no flaw) 

Reject Ho if ZT > Za (flaw) 

The window size should be comparable to that of the expected flaw size. 

4.2 CRT colorimetry 

(4.4) 

This section describes how the intensity values on the cathode ray tube (CRT) can 

be calculated from the digital gray values of the image [3]. The presentation in this 
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section is necessary because all digitized radiographs are viewed on a CRT and the 

characteristics of the CRT influence the luminance of the pixels. The luminance of the 

pixels influences the image quality. For example some cathode ray tubes have poor pixel 

resolution. Here a computer controlled CRT display system is considered. The graphics 

hardware contains a frame buffer, a lookup table (LUT), and video-signal generation 

circuitry. The digital information is processed in the L UT. We assume that the L UT 

does not alter the digital values. The digital values are quantized linearly to voltages in 

the digital-to-analog (DAC) converter. The model relates DAC values to the properties 

of phosphor emission. The DAC values dr are quantized linearly to video voltages vr: 

dr 
Vr = (vmax- Vmin)(

2
N _ l) + Vmin (4.5) 

where Vmax is the maximum video voltage representing white level and Vmin is the mini-

mum voltage used for defining the black level. The video voltage is modulated between 

Vmax and Vmin· The electrons emitted by the cathode are accelerated towards the the 

phosphor screen (anode). The control grids modulate the flow of the electrons. The 

video amplifiers transform the positive video voltages into negative voltages va that are 

applied to the first control grids: 

va = av + b (4.6) 

where a is the video amplifier gain and b is the video amplifier offset. 

The relationship between the electron beam current j modulated by the control grid 

and the amplified video voltage is nonlinear. As va become more negative with respect 

to the cathode, electrons are repelled, reducing the beam current and resultant phosphor 

excitation. Below a cutoff voltage vc, the grid voltage does not affect the beam current. 

The relationship between beam current j and grid voltage va is given by 

J - (va- vc)'Yr vc ~ va 

- 0 Vc > VG (4.7) 
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Plotting the optical density against the logarithm of exposure results in a sigmoid 

function; the calculated slope of the straight-line portion of the sigmoid curve is the 'Y 

of the particular emission. 

4.3 Results 

The probability of detection (pod) values are calculated using 30 images. It was found 

by experimental methods that we need at least 25 images to calculate pod effectively. 

The pod values can be used in the determination of presence of flaw. The pod values 

do not reflect the visibility of the flaw. Table 4.1 shows the the probability of detection 

(pod) values for a flat plate with different flaw sizes and how the compression affects the 

pod values. The file 'flat0.5mil' is the simulated radiograph (using XRSIM) for a flat 

plate of thickness 1 inch with a 0.5 mil flaw. The fractal coding parameters are tolerance 

1, mimimum quadtree level4, maximum quadtree level6. The image was obtained after 

20 iterations with no post processing. The false alarm rate is 0.05. A 16x16 window was 

considered in a 256x256 image. The pod values for fractal image compression are high 

since in the compressed image both the noise and the signal regions are smoothed out. 

So the pod increase is not an actual pod increase since the gray levels of the pixels are 

considerably different from the original image. Vector quantized images have low errors 

in the individual pixels and hence their pod values are close to the pod values in the 

original image. 

Table 4.1 POD values for different compression routines 

Compression flat0.5mil flat1.25mil flatl.5mil 
Method 
Original 0.4692 0.8729 0.9506 
Fractal 0.9018 0.9951 0.9951 
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5 RESULTS 

Vector quantization achieves compression ratio of the order of 7. When the edge 

threshold Te is increased above 0.15 the differences are visible. JPEG achieves a higher 

compression when compared to vector quantization for a class of images in which the 

transform cE>efficients are better correlated than in the image domain. When the quality 

factor Q is below 0. 7 JPEG breaks down and artifacts are introduced. Fractal image com­

pression ratios are dependent on the images, since the transformations are constructed 

from the blocks in the images. When the quadtree level is decreased the degradation 

of the compressed image is evident since the block size increases. The compression is 

controlled by the quadtree level and the amount of error we are willing to tolerate. One 

of the advantages of fractal image compression is that the image can be decoded at any 

desired resolution. It acts like an interpolator for decoding at resolutions higher than 

the original image size. 

The image post12 was obtained using a real time x-ray imaging system. Figure 5.1 

through 5.4 represent the decompressed images for post12 for one, two, four and eight 

iterations respectively of the code. The initial image used was all black. From the varia­

tion between the decompressed images between successive iterations, it is observed that 

it takes at least eight iterations before the decompressed image stabilizes. Figures 5.5 

through 5.8 are decompressed images for post12 for one, two, four and eight iterations 

where the initial image was post9. It can be inferred from Figure 5.1 and Figure 5.8 

that after eight iterations the decompressed images do not differ much, even though the 

starting images are different. The initial image does not affect the uncompressed image, 
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F igure 5.1 Decompressed image for 'postl2' after one iteration of the code 

it is the combinat ion of a ll t ransformat ions on the blocks that describes the compression. 

For images visual d ifference predictor (VDP) values less than 0.5 can be tolerated. 

VDP and probability of detection are two different measures which measure image qual­

ity. 

From the Table 5.1 it can been inferred that t he compression ratio achieved by VQ 

is close to that of JPEG . Fractal coding does bet ter than VQ and JPEG for image like 

postl2 where there is much self similarity among the blocks. Fractal coding achieves 

good coding of t he flat5mil whereas other methods have poor compression rat ios. 

Future Work 

Vector quantization in the t ransform domain needs to be explored. The classification 

of edges and shades Cctll be improved. A weighted vector quantization will weight the 



www.manaraa.com

63 

Figure 5.2 Decompressed image for ' post12' after two iterations of the code 



www.manaraa.com

64 

Figure 5.3 Decompressed image for 'post l 2' after four iterat ions of the code 
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F igure 5.4 Decompressed 1mage for 'post12 ' after eight iterat ions of the 
code 
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Figure 5.5 Decom pressed image for 'post12 ' after one iteration with 'post9 ' 
as the initial image 
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Figure 5.6 Decompressed image fo r 'pos t12' after two iterations with 'post9' 
as the initial image 
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Figure 5.7 Decompressed image for 'post12' after four iterations with 
'post9' as t he ini tial image 
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Figure 5.8 Decompressed image for 'post12' after eight iterations with 
' post9 ' as the ini tial image 
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Table 5.1 Compression Ratio 

Image Loss less VQ THL=1 VQ THL=2 JPEG Fractal 
THS=0.1 THS=0.15 Q=0.70 

autof 1.654 8.100 11.520 11.060 5.281 
post9 1.410 7.465 7.717 10.450 4.520 

post12 1.015 1.927 1.926 4.067 4.596 
flat5mi1 1.110 1.613 1.607 2.530 5.258 

pixels along the sides of the blocks and it might be able to reduce the inter block 

discontinuities. In fractal image compression the mean square error is used to optimize 

the transformations. Instead of the mean square error a weighted error can be used 

which will minimize the distortions depending on the values in the block. The cortex 

transform can be used for image compression. The quantizer design while using the 

cortex transform for compression needs to be explored as the compression algorithm 

must introduce aritfacts which are not visible. 

The cortex transform is one of the approximations used to represent the multiresolu­

tion properties of the cortex. Computation of the cortex transform is time consuming. 

Other efficient techniques to represent the cortex transform have to be explored like 

Gabor Transform, Wavelet Transform etc. The Gabor Transform is optimal for space­

frequency localization. In the VD P method the parameters k1 , k2 and s need to be 

estimated for each of the individual bands in the cortex filter. The probability sum­

mation to arrive at the final VDP image needs to be investigated further to improve 

the performance of the algorithm. The orientation and spatial bandwidths have been 

simplified in the current implementation. Allowing variable orientation and spatial band­

widths for the individual filters in the cortex filter might improve the performance of the 

visual difference predictor. The relationship between visual difference predictor (VDP) 

and probability of detection (pod) needs to be explored. This might help the image 

compression in terms of the error and also in terms of the appearance of the error when 

the compressed image is viewed by the eye. 
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Since the cortex filter is a multiresolution filter parallel implementations of it will 

speed up the the computation of VDP. In the fractal image compression algorithm, 

further methods to reduce the domain space and efficient computations of the transfor­

mations should be developed. 
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APPENDIX CORTEX TRANSFORM 

The cortex transform maps an image into a. set of images that vary in resolution and 

orientation. The cortex transform is used to model human vision. 

Mathematical analysis of visual Cells 

Each neuron in the cortex is characterized by its receptive field (RF), the region of 

the retina within which light will cause some response of the cell. If the response is 

linear it can be characterized by a weighting function. Total response of the cell can 

be computed by cross correlation of the weighting function and the input image. To 

model the above effects the images, weighting function, and neural images are expressed 

in discrete form on a rectangular array. 

Cortical cells 

The area of the brain that plays an important role in vision is the portion of the 

visual cortex known a.s Vl. In the Vl area half of the cells are called simple cells, 

which appear to have approximately linear integration over their receptive fields, their 

output subjected to thresholding, compression, saturation and half wave rectification. 

The simple cells have receptive fields characterized by radial spatial frequency and ori­

entation. The cell will respond to frequencies and orientations within a particular range 

about its center value. The bandwidth is proportional to the center frequency. De valois 

found that the median spatial frequency bandwidth is 1.4 octaves and median orien­

tation bandwidth is 40°. Each cell receptive field occupies a small area that is much 
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smaller than the total frequency region to which the group of cells is sensitive. The ideal 

receptive field is a 2D Gabor function. 

Pyramid decomposition 

For a number of applications in image processing the image is decomposed into a 

number of low-pass or band-pass subimages. The subimages are subsampled in propor­

tion to their resolution resulting in a pyramid. Pyramid structure permits the execution 

of the algorithm in parallel at several scales. It allows coarse-to-fine searches and to 

match image quantization to frequency dependent contrast discrimination in humans. 

Mesa filter 

A low-pass filter with unit gain within the pass-band, and Gaussian fall-off beyond 

some corner frequency, .f, which we define as the frequency at which the gain is ~· The 

filter is given below 

(A. I) 

where r = (u 2 + v2 )t, and where II is a rectangular pulse of unit height and width 

centered around the origin. The blurring of the edges can be varied by the sharpness 

parameter I· Sharpness parameter is proportional to the corner frequency, divided by 

the sharpness parameter. We would like to pass as much of the images as possible and 

modest truncation of the Gaussian taper. To balance these a parameter /3 which is the 

ratio of the corner frequency f to the Nyquist frequency is introduced. If the image size 

is N, the corner frequency is 

.f = {3Nj2 (A.2) 

Mesa filter has a variable control of the corner frequency and the sharpness of the cutoff. 

New mesa filters at different scales can be generated by shrinking the original by a scale 
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factor of s. The result is a blurry disk, with a corner frequency a factor of 2 lower and 

a cutoff twice as sharp. Thus 

(A.3) 

where s is the scale factor and k is the filter level. 

Difference of mesa filter 

The difference of mesa ( dom) filter is constructed by subtracting the smaller disk m 1 

from the larger disk m 0 . The goal is to get a filter with approximately gaussian shape 

and the dom filter has a roughly gaussian shape. Higher values of gamma the deviation 

from the gaussian is more. By subtracting adjacent pairs of mesa filters dom filters are 

generated. The high residue consists of the corners that remain after the largest dom 

filter is removed. Let d be the frequency domain representation of the dom filter and k 

be the resolution level. The largest filter has resolution 0, then 

(A.4) 

The dom filters provide a set of self-similar partitioning of the frequency region, each of 

approximately Gaussian shape. 

Bisection filter 

A filter that divides the frequency space, is considered along the horizontal frequency 

aXIS. 

(A.5) 

The edge has variation in the v dimension only. w is the sharpness parameter. Convo­

lution with an edge is equivalent to integration, hence the above expression is rewritten 

as 

b(u,v) = [~ wexp(-1rw2r 2 ),dr = cum(wv) (A.6) 
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This filter bisects along the u axis, passing the upper half of the frequency plane. The 

expression for a blurry edge rotated by a is given by 

b0 (u, v) = cum[w(v cos a-u sin a)] (A.7) 

Fan filter 

The radial frequency of a sinusoid is given by the distance of the pixel from the 

origin, and the orientation is given by the angle relative to the horizontal axis. To select 

different bands in the orientation we use fan shaped regions. The fans are created by 

repeated bisection of the frequency space. This will ensure that the fans sum to one at 

all points in the frequency domain. The first cut is placed arbitrarily at an angle of 0. 

This methods can be used for any number of orientations that is a power of two. The 

fan filters of orientation bandwidth ~ = 7r /f! are generated by the 

Cortex filter 

The dom filter and the fan filters are multiplied to get the cortex filter. The orien­

tation and spatial bandwidths are variable and are set here to 45° and one octave. The 

orientation parameter w is set midway between the sharpness of the inner and outer 

tapers of the corresponding dom filter. 
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